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Theoretical and experimental investigations of localized structures appearing in filtration of nonlinear 

viscoplastic drilling fluids are reported. The depth of penetration of mud into a porous medium is shown to 

be dependent on the rate of change of the pressure on the boundary. This fact has been suggested for use in 

creation of colmatage barriers that prevent penetration of drilling mud into strata. 

Introduction. Penetration of drilling fluids into a stratum (upon its opening) and their filtration can result 

in a sharp reduction in the stratum permeability due to colmatage processes (cluttering of the pores with disperse 

particles suspended in the fluid). Investigations show that this phenomenon serves as a basic cause of reduction in 

well output. Sometimes, due to colmatage, well output is reduced by tens of times. Colmatage taking place in close 

vicinity to a well can play a positive role as well, since it leads to formation of a low-permeability layer of the porous 

medium that limits penetration of drilling mud into the stratum. This effect can be purposefully employed to protect 

the near-bottom zone when technological techniques enabling the creation of colmatage barriers of sufficiently small 

thickness near the well walls are available. 

In the present paper it is shown that rheotechnological methods can be used to control colmatage processes. 

These methods are based on the use of specific features of the rheology of drilling mud (the structural viscosity of 

the fluids is strongly dependent on their shear rate [1-4 ]). An analysis of certain exact solutions of filtration 

equations for a nonlinear viscoplastic fluid is performed. On the basis of the analysis it is shown that the intrusion 

depth of the fluid into a stratum can be regulated by controlling the rate of pressure change at the porous medium 

boundary. Experimental results on investigation of filtration of water-polymer drilling fluids in a laboratory model 

of a stratum are given that confirm qualitative conclusions made in an analysis of mathematical models. 

Localization of Boundary Regimes. The rheology of drilling fluids is determined by the interaction of 

molecules and supramolecular aggregates that tend to form a spatial structure, which provides the fluids with 

viscoplastic properties. Viscoplasticity means that the fluids start to move only when the absolute value of the 

pressure gradient exceeds a certain critical value (the starting pressure gradient). In movement the behavior of the 

structured fluid also differs substantially from the behavior of an ordinary viscous (Newtonian) fluid, since an 

increase in the shear rate leads to further degradation of the structure. Therefore, drilling fluids should be included 

in the class of nonlinear viscoplastic media whose structural viscosity depends on the velocity of movement. 

Equations describing the transient radially symmetric filtration of a nonlinear viscoplastic medium are of 
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the form [5, 6 ]: 
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where m, fl, and k are the porosity, compressibility, and permeability of the porous medium; P is the pressure;/z 

=~  (Iv I) is the fluid viscosity, which depends on the filtration rate v: 

Z =  ~ - O  

(0 is the initial pressure gradient; S = O, 1, or 2 for flat, flat-radial, and spherical filtration, respectively). If we 

restrict ourselves to consideration of solutions monotonical decreasing in x and replace the variables by the 

dimensionless ones 

- -  D 

P = P / P o  , 0 = 0 / 0  O, Z = Z / O  O, 'v = v / v  O, 

�9 ~ l ( V ) = f l ( V O ~ ) / / ~ O  , 7=t/ t  o, '2= x ,  
Xo 

where Po, 0o, and/x o are certain characteristic values of the pressure, initial pressure gradient, and viscosity; 

k 2 
l~ = P ~ 1 7 6  ; v~ = ~o 6)~ t~ = x ~  ; 

a = k/mflt~o is the piezoconductivity coefficient, then by differentiating with respect to x we obtain from (1) the 

equation 

o~+o~  a [1 o ( ~ r  ~ e R ,  7e(0-+o~) (3) 
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where R is the domain in which Z > 0; ~ = r is the function inverse to the function Z = 7/~ (v-). We will consider 

that the function ~(Z) is a monotonically increasing one, and 

~,' (o) = o. (4) 

Hereinafter, we will use only dimensionless quantities, and therefore the bars will be omitted. 

First of all we consider solutions of (3) corresponding to a constant O: O = O1. By virtue of (4) Eq. (3) is 

degenerate: at Z = 0 the condition of its parabolicity is violated. As is known [7, 8 ], such equations can have 

generalized solutions describing propagation of disturbances with a finite penetration depth (as mentioned above, 

precisely these solutions are of interest to us). In order to study the behavior of localized regimes in more detail, 

we approximate the function by a power dependence 

~ F ( Z ) = Z  2, 2 = c o n s t >  1. 

By making the replacement 

we obtain from (3) (for | -- const) 

where 

a 2 t l l - .~  X Z ,  y =  x , T - - U  , 

oo(,o:1 
- ~ =  Y -~Y - 7 0 y ) '  

(5) 

~ = 1 + ~  , d = ~j~(~ + 1). 
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We consider a solution of (5) in the form of a running wave [7-9 ]: 

T (v) [~2 (Q _ y2ln, 
u ( r ,  y ) =  0 ,  y > ~ ( r ) .  

y < ~ ( r ) ,  (6) 

Substituting (6) into (5), we obtain 

~, (~2 _ yZ)n + 2 n ~ T  (~2 _ y2)n-1 = T 2 [4n2 (n2 - 1) y2 (~2 _ yZ)n2-2 _ 

- 2 (1 - d) n2 (~2 _ y2)n2-11, (7) 

where the dot denotes differentiation with respect to the time. 

If we set n = 1/(2 - 1) and assume that the function ~(v) satisfies the equation 

1 d~ 22 T2-1 (8) 
~f d r - , , l - 1  ' 

we can cancel factors of the form (~z _ y2)n in (7) and obtain an equation relative to T(r): 

dT 
dr ~ - B~ ' (9) 

where 

B 0 - 2 - -  1 + 1  - d  . 

From (9) and (8) we easily obtain 

T =  TO ~ = ~ 0 ( B r +  I) 6 , 
(Br + 1) 1/(~-1) ' 

where B = B o G  - 1)To z - l ,  TO -- T(0),  ~0 = ~(0), 6 = 1 / [2  + (2 - 1)(1 - d) ] > 0. This solution is a running wave 

with a f ront  at the point x -- /(r) -- ~l/a(r). It is evident that l(r) -) co as r -) oo. The  pressure distribution 

corresponding to this solution is determined by the expression 

01 (l - x) + T (r) 

P (r ,  x) = 

O, x > l ( O .  

l 
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In certain cases the integral in (10) may easily be taken. Thus, if 2 = 2 and S = 0, then n = 1, a -- 1, d = 

0. Here,  

[ 1 1 P ( z ' ,  X) = O 1 ( l -  x) + T ( r )  1 2 ( l -  x) - - ~ ( 1 3  _ x 3) , x 1 -< x - <  l .  

Setting xl = 0, we determine the change in the pressure at the boundary of the porous medium P1 (x:) = P('c, Xl): 

P1 (T) = ~001 (Bt + 1) ~ + 2To~0a/3. 
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Thus, for O1 ~ 0 the solution obtained corresponds to unbounded growth of the pressure at the b o u n d a u / ( a  regime 

with sharpening). On the other hand,  if O1 ~- 0, then P1 (7) - 2T0~0 a = const. 

From expression (10) it follows that at any moment of time drilling mud penetrates into the porous medium 

only to a limited depth. Therefore (when colmatage is "switched on"), the entire porous medium is not contaminated 

but only some near-boundary part of it. In order to define this qualitative approach more exactly, we consider a 

model in which degradation of the filtrational properties of the stratum due to colmatage processes is taken into 

account explicitly. We assume that precipitation of disperse particles of the drilling mud onto the pore wails results 

in an increase in the initial pressure gradient. It is known that in movement with high velocities the macromolecule 

globes can become "solid," which increases the rate of their precipitation [5 ]. Therefore, we may consider that the 

change in the quantity O is determined by the fluid movement velocity: 

O0 O0 _ a l Z r  Z (11) 
= a l  v~' or 07 

By analogy with the previous case we can obtain from (3) and (11) with 7 - 1/;t the following equation 

m = y _ _  _ a l  u , 
07 Oy Oy ) 

(12) 

whose solution can again be sought in the form (6). Here, the functions T(z), ~(7) and 0(7,  x) are determined by 

the equations 

d T  _ T ~ - a T ,  (13) 
d't: 1 

d~ = b ~ T X - 1  (14) 
d71 
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0 7 1  - -  ] 0 ,  x > l (71), 

where 71 = BO 7, a = a l / B O ,  l = ~1/~(71). 

From (13) and (14) it follows that as r 1 --> oo the boundary of the localized domain/(71) tends to the finite 

limit loo: In /(q) ~- In l~o - c exp [ - a (2  - 1)q ], where c is a certain constant. Hence, the solution obtained 

corresponds to a standing wave. As an example, we consider again the particular case specified by the values 2 = 

2, S = 0, x l  = O. Then, a = 1, d = 0, BO = 12. Assuming that | x) -= 0, we obtain 

P (71 ,  x) = F ( 7 1 ,  x) + a  
T 1 

f 
T0(x) 

F (Vl ,  x) d71, 

where 

1 (l 3 _ x 3) 1 F(T1,  X) = T(71) 1 2 ( l - x )  -- '~ 

z0 = 70 (X) is the function inverse to l(r0). 

Figure lb presents the function P(71, x) at various times. The function was obtained by numerical 

integration of Eqs. (13 ) -  (15) by the Runge-Kutta method with a step of Az = 0.02 at a = 1, To = 20, ~ = 0.1. Curve 

1 in this figure corresponds to a standing wave, and in Fig, la  the boundary regime PI (Zl) = P(Z l ,  0) is given. 
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Fig. I. Standing wave: a) the boundary regime PI(TI) = P(TI, 0); b) the 
function P(TI, O) at various times. 
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Fig. 2. Localized structures in various boundary regimes: 1) T = 15; ~o = 0.01; 

2) 20 and 0.005; 3) 20 and 0.05; 4) 20 and 0.1. 

Figure 2b gives standing waves corresponding to various laws of pressure change at the boundary (Fig. 2a). 

From the form of these curves the important practical conclusion may be made that the higher the rate of change 

of the boundary pressure the more effective the produced colmatage barrier, i.e., the higher the pressure it can (at 

the same depth) withstand. 

Experimental Investigation of Filtration of Water-Polymer Drilling Fluids. Investigations were performed 

on a special setup (Fig. 3) consisting of a measuring press, a high-pressure vessel, and a stratum model. The latter 

consists of three sections and three tubes coupled with each other (the length of each tube is 0.08 m). Thus, the 

length of the entire stratum model is 0.24 m. The stratum was simulated by thoroughly rammed quartz sand. The 

gas permeability of the stratum ranged from 0.5 to 1 pm 2. In 0.08 m intervals at the end of each section sample 

pressure gauges were fixed above, and drain valves were fixed below to sample the filtrate. 

Experiments on the setup described were performed as follows. The high-pressure vessel was filled with a 

water-polymer solution. A 1% aqueous solution of K-4 polymer reagent was used as an experimental fluid. The 

solution in the vessel was pressurized to 4 MPa. Then the inlet valve to the strarun model was opened and the 

water-polymer solution started to penetrate into the stratum. 

Experiments of two types were performed. In the former (Fig. 4a) the pressure at the inlet was raised from 

0 to 4 MPa almost instantaneously and then maintained constant at 4 MPa up to the end of the experiment. In 
experiments of this type the outlet valve of the setup was closed. Readouts of each pressure gauge were written at 

equal time intervals. When the pressure changes rapidly at the front boundary of the stratum model layer the 

water-polymer solution starts to filter into the stratum. The pressure at gauge 2 in the first section starts to grow 
approximately 60 sec after the start of the disturbance. Pressure gauge 3 at the end of the second section started 
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Fig. 3. Schematic diagram of the experimental setup: 1) the measuring press; 

2) the high-pressure vessel with drilling mud; 3) the stratum model; 4) the 

sample pressure gauges; 5) the valves for sampling the filtrate. 
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Fig. 4. Pressure distribution in the stratum model in filtration of a 1% 

aqueous solution of K-4 polymer when the pressure at the boundary was 

changed instantaneously. P1, MPa; t, min; x, cm. 

to detect a pressure change in 150 sec. Pressure gauge 4 at the end of the third section did not detect any changes 

in the pressure, i.e., the pressure was equal to zero. The above facts indicate that the front of polymer in the porous 

medium stopped between pressure gauges 3 and 4. Filtration of the water-polymer fluid was performed for 180 

min. Readouts of the pressure gauges were plotted (Fig. 4b) to obtain a pressure distribution in the stratum model 

when the pressure at the boundary of the stratum changes rapidly. 

The experiments showed that the pressure distribution stabilized 10 min after the start of filtration and 

did not change up to the end of the experiment. Here, the pressure gradient over the first section was higher than 

that over the second section. This picture probably occurs due to more effective sedimentation of the polymer 

particles in this section than in the first section of the model. Consequently, resistance to water-polymer fluid flow 

in this section is higher than that at the inlet to the model. In turn, in the third section the resistance to movement 

of the fluid became so high that the intrusion front stopped and localized at some distance from the end of the 

stratum model. 

In the second type of experiment the pressure at the inlet was raised from 0 to 4 MPa slowly, in 10 rain 

(Fig. 5). Here, a picture different from that in the previous experiment was observed. When the pressure at the 

inlet changes slowly, the fluid starts to filter into the stratum without significant resistance, and the front of the 

intrusion reaches the end of the stratum model in 10 min. The experiment was conducted for 180 rain. In this time 
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Fig. 5. Pressure distribution in the stratum model in filtration of a 1 

aqueous solution of K-4 polymer when the pressure at the boundary was 

changed slowly: 1) 10 rain; 2) 20i 3) 30; 4) 120. 

the pressure at pressure gauge 2 in the first section of the model equalized to the initial level. Readouts of pressure 

gauges 3 and 4 were also substantially higher than those in the first type of experiment. 

The experiments were repeated several times and showed the same behavior. 

The experimental results obtained confirm that when a certain boundary regimes of pressure change are 

maintained a small depth of penetration of the fluid into the stratum can be provided. It has been shown that an 

increase in the rate of pressure change at the boundary of a porous medium results in a reduction in the depth of 

penetration of the fluid. This fact is suggested for use in the development of technological measures for preventing 

contamination of a stratum by drilling fluids. 

Conclusion. Self-similar solutions of equations describing filtration of nonlinear viscoplastic fluids have 

been obtained in the present work. On the basis of their analysis the possibility of formation of localized structures 

has been shown whose depth of penetration into the porous medium depends on the rate of pressure change at the 

boundary of the stratum. In order to confirm this conclusion, an experimental investigation of filtration of polymer 

solutions used in drilling has been performed. This fact is suggested for use in the development of technological 

measures for preventing contamination of strata by drilling fluids. 
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